The DEAD-box helicase DDX3x ameliorates non-alcoholic fatty liver disease via mTORC1 signalling pathway

DEAD-box 解旋酶 DDX3x 通过 mTORC1 信号通路改善非酒精性脂肪肝疾病

阅读:7
作者:Peihao Liu, Yuwei Zhang, Chenxi Tang, Li Cen, Yishu Chen, Sha Li, Xueyang Chen, Mengli Yu, Jie Zhang, Xiaofen Zhang, Hang Zeng, Chengfu Xu, Chaohui Yu

Aims

The DEAD (Asp-Glu-Ala-Asp)-box helicase family member DDX3x has been proven to involve in hepatic lipid disruption during HCV infection. However, the role of DDX3x in non-alcoholic fatty liver disease (NAFLD), in which lipid homeostasis is severely disrupted, remains unclear. Here, we aimed to illustrate the potential role of DDX3x in NAFLD.

Background & aims

The DEAD (Asp-Glu-Ala-Asp)-box helicase family member DDX3x has been proven to involve in hepatic lipid disruption during HCV infection. However, the role of DDX3x in non-alcoholic fatty liver disease (NAFLD), in which lipid homeostasis is severely disrupted, remains unclear. Here, we aimed to illustrate the potential role of DDX3x in NAFLD.

Conclusions

DDX3x involved in the progression of NAFLD via affecting the mTORC1 signalling pathway. DDX3x might be a potential target for NAFLD treatment.

Methods

DDX3x protein levels were evaluated in NAFLD patients and NAFLD models via immunohistochemistry or western blotting. In vivo ubiquitin assay was performed to identify the ubiquitination levels of DDX3x in the progression of steatosis. DDX3x protein levels in mice livers were manipulated by adeno-associated virus-containing DDX3x short hairpin RNA or DDX3x overexpression plasmid. Hepatic or serum triglyceride and total cholesterol were evaluated and hepatic steatosis was confirmed by haematoxylin and eosin staining and oil red o staining. Western blotting was performed to identify the underlying mechanisms of DDX3x involving in the progression of NAFLD.

Results

DDX3x protein levels were significantly decreased in NAFLD patients and NAFLD models. DDX3x protein might be degraded via ubiquitin-proteasome system in the progression of steatosis. Knockdown of hepatic DDX3x exacerbated HFD-induced hepatic steatosis in mice, while overexpression of hepatic DDX3x alleviated HFD-induced hepatic steatosis in mice. Further explorative experiments revealed that knockdown of DDX3x could lead to the overactivation of mTORC1 signalling pathway which exacerbates NAFLD. Conclusions: DDX3x involved in the progression of NAFLD via affecting the mTORC1 signalling pathway. DDX3x might be a potential target for NAFLD treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。