Development of a robust and generalizable algorithm "gQuant" for accurate normalizer gene selection in qRT-PCR analysis

开发一种稳健且可推广的算法“gQuant”,用于 qRT-PCR 分析中准确的标准基因选择

阅读:7
作者:Abhay Kumar Pathak #, Sukhad Kural #, Shweta Singh, Lalit Kumar, Mahima Yadav, Manjari Gupta, Parimal Das, Garima Jain

Abstract

The emergent role of nucleic acid-based biomarkers-microRNAs(miRNAs), long non-coding RNAs(lncRNAs), and messenger RNAs(mRNAs), is becoming increasingly prominent in disease diagnostics and risk assessment. qRT-PCR is the primary analytical method for quantitative measurement of biomarkers. Yet, the relative infancy of non-coding RNAs recognition as biomarkers poses a challenge due to the absence of a consensus on a universally accepted normalizer gene, an absolute requirement for accurate quantification. Current tools normalizer selection are fraught with statistical limitations and suboptimal graphical user interface for data visualisation. These deficiencies underscore the necessity for a balanced tool tailored to handle qRT-PCR datasets. Addressing the identified challenges, we have developed 'gQuant' tool crafted to address these limitations. We employed voting classifiers that combine predictions from multiple statistical methods. Tool's efficacy was validated through different available and in house data derived from urinary exosomal miRNAs datasets. Comparative analysis with existing tools revealed that their integrated methodologies could skew the ranking of normalizer genes, whereas 'gQuant' consistently yielded rankings characterised by lower standard-deviation, reduced covariance, and enhanced kernel density estimation values. Given 'gQuant's' promising performance, normalizer gene identification will be greatly improved, improving precision of gene expression quantification in a variety of research scenarios. The gQuant tool developed for this study is available for public use and can be accessed at [ https://github.com/ABHAYHBB/gQuant-Tool ]."

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。