Mosaic and non-mosaic protocadherin 19 mutation leads to neuronal hyperexcitability in zebrafish

嵌合型和非嵌合型原钙粘蛋白 19 突变导致斑马鱼神经元兴奋性过高

阅读:8
作者:Barbara K Robens, Xinzhu Yang, Christopher M McGraw, Laura H Turner, Carsten Robens, Summer Thyme, Alexander Rotenberg, Annapurna Poduri

Abstract

Epilepsy is one of the most common neurological disorders. The X-linked gene PCDH19 is associated with sporadic and familial epilepsy in humans, typically with early-onset clustering seizures and intellectual disability in females but not in so-called 'carrier' males, suggesting that mosaic PCDH19 expression is required to produce epilepsy. To characterize the role of loss of PCDH19 function in epilepsy, we generated zebrafish with truncating pcdh19 variants. Evaluating zebrafish larvae for electrophysiological abnormalities, we observed hyperexcitability phenotypes in both mosaic and non-mosaic pcdh19+/- and pcdh19-/- mutant larvae. Thus, we demonstrate that the key feature of epilepsy-network hyperexcitability-can be modeled effectively in zebrafish, even though overt spontaneous seizure-like swim patterns were not observed. Further, zebrafish with non-mosaic pcdh19 mutation displayed reduced numbers of inhibitory interneurons suggesting a potential cellular basis for the observed hyperexcitability. Our findings in both mosaic and non-mosaic pcdh19 mutant zebrafish challenge the prevailing theory that mosaicism governs all PCDH19-related phenotypes and point to interneuron-mediated mechanisms underlying these phenotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。