MICU1 Alleviates Diabetic Cardiomyopathy Through Mitochondrial Ca2+-Dependent Antioxidant Response

MICU1 通过线粒体 Ca2+ 依赖性抗氧化反应缓解糖尿病心肌病

阅读:4
作者:Lele Ji, Fengzhou Liu, Zhe Jing, Qichao Huang, Ya Zhao, Haiyan Cao, Jun Li, Chun Yin, Jinliang Xing, Fei Li

Abstract

Diabetic cardiomyopathy is a major cause of mortality in patients with diabetes, but specific strategies for preventing or treating diabetic cardiomyopathy have not been clarified yet. MICU1 is a key regulator of mitochondrial Ca2+ uptake, which plays important roles in regulating mitochondrial oxidative phosphorylation and redox balance. To date, however, the significance of MICU1 in diabetic hearts has not been investigated. Here, we demonstrate that MICU1 was downregulated in db/db mouse hearts, which contributes to myocardial apoptosis in diabetes. Importantly, the reconstitution of MICU1 in diabetic hearts significantly inhibited the development of diabetic cardiomyopathy, as evidenced by enhanced cardiac function and reduced cardiac hypertrophy and myocardial fibrosis in db/db mice. Moreover, our in vitro data show that the reconstitution of MICU1 inhibited the apoptosis of cardiomyocytes, induced by high glucose and high fat, through increasing mitochondrial Ca2+ uptake and subsequently activating the antioxidant system. Finally, our results indicate that hyperglycemia and hyperlipidemia induced the downregulation of MICU1 by inhibiting Sp1 expression in diabetic cardiomyocytes. Collectively, our findings provide the first direct evidence that upregulated MICU1 preserves cardiac function in diabetic db/db mice, suggesting that increasing the expression or activity of MICU1 may be a pharmacological approach to ameliorate cardiomyopathy in diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。