ATP-Coated Dual-Functionalized Titanium(IV) IMAC Material for Simultaneous Enrichment and Separation of Glycopeptides and Phosphopeptides

ATP 包覆的双功能钛(IV)IMAC 材料用于同时富集和分离糖肽和磷酸肽

阅读:5
作者:Danqing Wang, Junfeng Huang, Haoran Zhang, Min Ma, Meng Xu, Yusi Cui, Xudong Shi, Lingjun Li

Abstract

Protein glycosylation and phosphorylation are two of the most common post-translational modifications (PTMs), which play an important role in many biological processes. However, low abundance and poor ionization efficiency of phosphopeptides and glycopeptides make direct MS analysis challenging. In this study, we developed a hydrophilicity-enhanced bifunctional Ti-IMAC (IMAC: immobilized metal affinity chromatography) material with grafted adenosine triphosphate (denoted as epoxy-ATP-Ti4+) to enable simultaneous enrichment and separation of common N-glycopeptides, phosphopeptides, and M6P glycopeptides from tissue/cells. The enrichment was achieved through a dual-mode mechanism based on the electrostatic and hydrophilic properties of the material. The epoxy-ATP-Ti4+ IMAC material was prepared from epoxy-functionalized silica particles via a convenient two-step process. The ATP molecule provided strong and active phosphate sites for binding phosphopeptides in the conventional IMAC mode and also contributed significantly to the hydrophilicity, which permitted the enrichment of glycopeptides via hydrophilic interaction chromatography. The two modes could be implemented simultaneously, allowing glycopeptides and phosphopeptides to be collected sequentially in a single experiment from the same sample. In addition to standard protein samples, the material was further applied to glycopeptide and phosphopeptide enrichment and characterization from HeLa cell digests and mouse lung tissue samples. In total, 2928 glycopeptides and 3051 phosphopeptides were identified from the mouse lung tissue sample, supporting the utility of this material for large-scale PTM analysis of complex biological samples. Overall, the newly developed epoxy-ATP-Ti4+ IMAC material and associated fractionation method enable simple and effective enrichment and separation of glycopeptides and phosphopeptides, offering a useful tool to study potential crosstalk between these two important PTMs in biological systems. The MS data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD029775.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。