Background
The
Conclusions
Altogether, the results show that the newly developed composite is biocompatible and leads to successful osteoconductive bone regeneration. The new biomaterial combines the structural stability provided by PCL with bioactive characteristics of BCP-based BSM. 3D-printed BSM provides an integration behavior in accordance with the concept of guided bone regeneration (GBR) by directing new bone growth for proper function and restoration.
Methods
Scaffolds were tested ex vivo for their mechanical properties using porous and solid designs. Subcutaneous implantation model analyzed the biocompatibility of PCL + BCP and PCL scaffolds. Calvaria implantation model analyzed the osteoconductive properties of PCL and PCL + BCP scaffolds compared to BCP as control group. Established histological, histopathological and histomorphometrical methods were performed to evaluate new bone formation.; (3)
