Comparison of Copper(II)-Ligand Complexes as Mediators for Preparing Electrochemically Modulated Nitric Oxide-Releasing Catheters

铜(II)-配体配合物作为制备电化学调节一氧化氮释放导管的介质的比较

阅读:4
作者:Kamila K Konopińska, Nicholas J Schmidt, Andrew P Hunt, Nicolai Lehnert, Jianfeng Wu, Chuanwu Xi, Mark E Meyerhoff

Abstract

Further studies aimed at examining the activity of different Cu(II)-ligand complexes to serve as electron-transfer mediators to prepare novel antimicrobial/thromboresistant nitric oxide (NO)-releasing intravenous catheters are reported. In these devices, the NO release can be modulated by applying different potentials or currents to reduce the Cu(II)-complexes to Cu(I) species which then reduce nitrite ions into NO(g) within a lumen of the catheter. Four different ligands are compared with respect to NO generation efficiency and stability over time using both single- and dual-lumen silicone rubber catheters: N-propanoate- N, N-bis(2-pyridylethyl)amine (BEPA-Pr), N-propanoate- N, N-bis(2-pyridylmethyl)amine (BMPA-Pr), 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3TACN), and tris(2-pyridylmethyl)amine (TPMA). Of these, the Cu(II)BEPA-Pr and Cu(II)Me3TACN complexes provide biomedically useful NO fluxes from the surface of the catheters, >2 × 10-10 mol·min-1·cm-2, under conditions mimicking the bloodstream environment. Cu(II)Me3TACN exhibits the best stability over time with a steady and continuous NO release observed for 8 d under a nitrogen atmosphere. Antimicrobial experiments conducted over 5 d with NO-releasing catheters turned "on" electrochemically for only 3 or 6 h each day revealed >2 logarithmic units in reduction of bacterial biofilm attached to the catheter surfaces. The use of optimal Cu(II)-ligand complexes within a lumen reservoir along with high levels of nitrite ions can potentially provide an effective method of preventing/decreasing the rate of infections caused by intravascular catheters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。