A role for nitric oxide in serotonin neurons of the midbrain raphe nuclei

一氧化氮在中脑缝核血清素神经元中的作用

阅读:4
作者:Sarah E Gartside, Abdurrahman Ercan Yurttaser, Amy L Burns, Nebojša Jovanović, Katie J Smith, Nana Shika Amegashiti, Bas M J Olthof

Abstract

Neuronal nitric oxide synthase (nNOS) catalyses the production of the neurotransmitter nitric oxide. nNOS is expressed in the dorsal raphe nucleus (DRN), a source of ascending serotonergic projections. In this study, we examined the distribution nNOS and the function of nitric oxide in the DRN and adjacent median raphe nucleus (MRN) of the rat. We hypothesized that nNOS is differentially expressed across the raphe nuclei and that nitric oxide influences the firing activity of a subgroup of 5-HT neurons. Immunohistochemistry revealed that, nNOS is present in around 40% of 5-HT neurons, throughout the DRN and MRN, as well as in some non-5-HT neurons immediately adjacent to the DRN and MRN. The nitric oxide receptor, soluble guanylyl cyclase, was present in all 5-HT neurons examined in the DRN and MRN. In vitro extracellular electrophysiology revealed that application of the nitric oxide donor, diethylamine NONOate (30-300 µM) inhibited 60%-70% of putative 5-HT neurons, excited approximately 10% of putative 5-HT neurons and had no effect on the rest. The inhibitory response to nitric oxide was blocked by [1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one (ODQ, 30 or 100 µM), indicating mediation by soluble guanylyl cyclase. Juxtacellular labelling revealed that nitric oxide inhibits firing in both putative 5-HT neurons which express nNOS and those which do not express nNOS. Our data are consistent with the notion that nitric oxide acts as both a trans-synaptic and autocrine signaller in 5-HT neurons in the DRN and MRN and that its effects are widespread and primarily inhibitory.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。