FUT8-Mediated Core Fucosylation Promotes the Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension

FUT8介导的核心岩藻糖基化促进肺动脉高压中的肺血管重塑

阅读:6
作者:Wen Zhang, Wenchao Lin, Xiaofang Zeng, Mengqiu Zhang, Qin Chen, Yiyang Tang, Jing Sun, Benhui Liang, Lihuang Zha, Zaixin Yu

Abstract

Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease with unclear underlying molecular mechanisms and limited therapeutic options. This study aimed to explore the role of core fucosylation and the only glycosyltransferase FUT8 in PAH. We observed increased core fucosylation in a monocrotaline (MCT)-induced PAH rat model and isolated rat pulmonary artery smooth muscle cells (PASMCs) treated with platelet-derived growth factor-BB (PDGF-BB). We found that 2-fluorofucose (2FF), a drug used to inhibit core fucosylation, improved hemodynamics and pulmonary vascular remodeling in MCT-induced PAH rats. In vitro, 2FF effectively restrains the proliferation, migration, and phenotypic switching of PASMCs and promotes apoptosis. Compared with controls, serum FUT8 concentration in PAH patients and MCT-induced rats was significantly elevated. FUT8 expression appeared increased in the lung tissues of PAH rats, and the co-localization of FUT8 with α-SMA was also observed. SiRNA was used to knockdown FUT8 in PASMCs (siFUT8). After effectively silencing FUT8 expression, phenotypic changes induced in PASMCs by PDGF-BB stimulation were alleviated. FUT8 activated the AKT pathway, while the admission of AKT activator SC79 could partially counteract the negative effect of siFUT8 on the proliferation, apoptotic resistance, and phenotypic switching of PASMCs, which may be involved in the core fucosylation of vascular endothelial growth factor receptor (VEGFR). Our research confirmed the critical role of FUT8 and its mediated core fucosylation in pulmonary vascular remodeling in PAH, providing a potential novel therapeutic target for PAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。