Tropomyosin isoforms bias actin track selection by vertebrate myosin Va

原肌球蛋白同工酶偏向脊椎动物肌球蛋白 Va 的肌动蛋白轨道选择

阅读:5
作者:Maria Sckolnick, Elena B Krementsova, David M Warshaw, Kathleen M Trybus

Abstract

Tropomyosin (Tpm) isoforms decorate actin with distinct spatial and temporal localization patterns in cells and thus may function to sort actomyosin processes by modifying the actin track affinity for specific myosin isoforms. We examined the effect of three Tpm isoforms on the ability of myosin Va (myoVa) to engage with actin in vitro in the absence or presence of the cargo adapter melanophilin (Mlph), which links myoVa to Rab27a-melanosomes for in vivo transport. We show that both the myosin motor domain and the cargo adapter Mlph, which has an actin-binding domain that acts as a tether, are sensitive to the Tpm isoform. Actin-Tpm3.1 and actin-Tpm1.8 were equal or better tracks compared to bare actin for myoVa-HMM based on event frequency, run length, and speed. The full-length myoVa-Mlph complex showed high-frequency engagement with actin-Tpm3.1 but not with actin-Tpm1.8. Actin-Tpm4.2 excluded both myoVa-HMM and full-length myoVa-Mlph from productive interactions. Of importance, Tpm3.1 is enriched in the dendritic protrusions and cortical actin of melanocytes, where myoVa-Mlph engages in melanosome transport. These results support the hypothesis that Tpm isoforms constitute an "actin-Tpm code" that allows for spatial and temporal sorting of actomyosin function in the cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。