Fetal ovine skeletal and cardiac muscle transcriptomics are differentially altered by increased maternal cortisol during gestation

妊娠期间母体皮质醇增加导致胎儿绵羊骨骼和心肌转录组发生差异改变

阅读:6
作者:Serene Joseph, Bryan Alava, Andrew Antolic, Elaine M Richards, Charles E Wood, Maureen Keller-Wood

Abstract

We have previously found that in utero exposure to excess maternal cortisol (1 mg/kg/day) in late gestation increases the incidence of stillbirth during labor and produces fetal bradycardia at birth. In the interventricular septum, mitochondrial DNA (mt-DNA) was decreased, and transcriptomics and metabolomics were consistent with altered mitochondrial metabolism. The present study uses transcriptomics to model effects of increased maternal cortisol on fetal biceps femoris. Transcriptomic modeling revealed that pathways related to mitochondrial metabolism were downregulated, whereas pathways for regulation of reactive oxygen species and activation of the apoptotic cascade were upregulated. Mt-DNA and the protein levels of cytochrome C were significantly decreased in the biceps femoris. RT-PCR validation of the pathways confirmed a significant decrease in SLC2A4 mRNA levels and a significant increase in PDK4, TXNIP, ANGPTL4 mRNA levels, suggesting that insulin sensitivity of the biceps femoris muscle may be reduced in cortisol offspring. We also tested for changes in gene expression in diaphragm by rt-PCR. PDK4, TXNIP, and ANGPTL4 mRNA were also increased in the diaphragm, but SLC2A4, cytochrome C protein, and mt-DNA were unchanged. Comparison of the change in gene expression in biceps femoris to that in cardiac interventricular septum and left ventricle showed few common genes and little overlap in specific metabolic or signaling pathways, despite reduction in mt-DNA in both heart and biceps femoris. Our results suggest that glucocorticoid exposure alters expression of nuclear genes important to mitochondrial activity and oxidative stress in both cardiac and skeletal muscle tissues, but that these effects are tissue-specific.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。