NAT10 Maintains OGA mRNA Stability Through ac4C Modification in Regulating Oocyte Maturation

NAT10通过ac4C修饰维持OGA mRNA稳定性并调节卵母细胞成熟

阅读:8
作者:Jiayu Lin, Yuting Xiang, Jiana Huang, Haitao Zeng, Yanyan Zeng, Jiawen Liu, Taibao Wu, Qiqi Liang, Xiaoyan Liang, Jingjie Li, Chuanchuan Zhou

Abstract

In vitro maturation (IVM) refers to the process of developing immature oocytes into the mature in vitro under the microenvironment analogous to follicle fluid. It is an important technique for patients with polycystic ovary syndrome and, especially, those young patients with the need of fertility preservation. However, as the mechanisms of oocyte maturation have not been fully understood yet, the cultivation efficiency of IVM is not satisfactory. It was confirmed in our previous study that oocyte maturation was impaired after N-acetyltransferase 10 (NAT10) knockdown (KD). In the present study, we further explored the transcriptome alteration of NAT10-depleted oocytes and found that O-GlcNAcase(OGA) was an important target gene for NAT10-mediated ac4C modification in oocyte maturation. NAT10 might regulate OGA stability and expression by suppressing its degradation. To find out whether the influence of NAT10-mediated ac4C on oocyte maturation was mediated by OGA, we further explored the role of OGA in IVM. After knocking down OGA of oocytes, oocyte maturation was inhibited. In addition, as oocytes matured, OGA expression increased and, conversely, O-linked N-acetylglucosamine (O-GlcNAc) level decreased. On the basis of NAT10 KD transcriptome and OGA KD transcriptome data, NAT10-mediated ac4C modification of OGA might play a role through G protein-coupled receptors, molecular transduction, nucleosome DNA binding, and other mechanisms in oocyte maturation. Rsph6a, Gm7788, Gm41780, Trpc7, Gm29036, and Gm47144 were potential downstream genes. In conclusion, NAT10 maintained the stability of OGA transcript by ac4C modification on it, thus positively regulating IVM. Moreover, our study revealed the regulation mechanisms of oocytes maturation and provided reference for improving IVM outcomes. At the same time, the interaction between mRNA ac4C modification and protein O-GlcNAc modification was found for the first time, which enriched the regulation network of oocyte maturation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。