From centralized to ad-hoc knowledge base construction for hypotheses generation

从集中式到临时式知识库构建以生成假设

阅读:7
作者:Shaked Launer-Wachs, Hillel Taub-Tabib, Jennie Tokarev Madem, Orr Bar-Natan, Yoav Goldberg, Yosi Shamay

Conclusion

Our approach enables researchers to create personalized, lightweight knowledge bases for specialized scientific interests, effectively facilitating hypothesis generation and literature-based discovery (LBD). By shifting fact verification efforts to post-hoc verification of specific entries, researchers can focus on exploring and generating hypotheses based on their expertise. The constructed knowledge bases demonstrate the versatility and adaptability of our approach to versatile research interests. The web-based platform, available at https://spike-kbc.apps.allenai.org, provides researchers with a valuable tool for rapid construction of knowledge bases tailored to their needs.

Methods

We propose a lightweight process using an extractive search framework to create ad-hoc knowledge bases, which require minimal training and no background in bio-curation or computer science. These knowledge bases are particularly effective for LBD and hypothesis generation using Swanson's ABC method. The personalized nature of the knowledge bases allows for a somewhat higher level of noise than "public facing" ones, as researchers are expected to have prior domain experience to separate signal from noise. Fact verification is shifted from exhaustive verification of the knowledge base to post-hoc verification of specific entries of interest, allowing researchers to assess the correctness of relevant knowledge base entries by considering the paragraphs in which the facts were introduced.

Objective

To demonstrate and develop an approach enabling individual researchers or small teams to create their own ad-hoc, lightweight knowledge bases tailored for specialized scientific interests, using text-mining over scientific literature, and demonstrate the effectiveness of these knowledge bases in hypothesis generation and literature-based discovery (LBD).

Results

We demonstrate the methodology by constructing several knowledge bases of different kinds: three knowledge bases that support lab-internal hypothesis generation: Drug Delivery to Ovarian Tumors (DDOT); Tissue Engineering and Regeneration; Challenges in Cancer Research; and an additional comprehensive, accurate knowledge base designated as a public resource for the wider community on the topic of Cell Specific Drug Delivery (CSDD). In each case, we show the design and construction process, along with relevant visualizations for data exploration, and hypothesis generation. For CSDD and DDOT we also show meta-analysis, human evaluation, and in vitro experimental evaluation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。