Acute Exercise in Hypobaric Hypoxia Attenuates Endothelial Shedding in Subjects Unacclimatized to High Altitudes

低压缺氧条件下的急性运动可减轻未适应高海拔的受试者的内皮细胞脱落

阅读:5
作者:Julia M Kröpfl, Tobias Kammerer, Valentina Faihs, Hans-Jürgen Gruber, Jan Stutz, Markus Rehm, Ingeborg Stelzer, Simon T Schäfer, Christina M Spengler

Abstract

Travel of unacclimatized subjects to a high altitude has been growing in popularity. Changes in endothelial shedding [circulating endothelial cells (ECs)] and hematopoietic stem and progenitor cells (CPCs) during physical exercise in hypobaric hypoxia, however, are not well understood. We investigated the change in ECs and CPCs when exposed to high altitude, after acute exercise therein, and after an overnight stay in hypobaric hypoxia in 11 healthy unacclimatized subjects. Blood withdrawal was done at baseline (520 m a.s.l.; baseline), after passive ascent to 3,883 m a.s.l. (arrival), after acute physical exercise (±400 m, postexercise) and after an overnight stay at 3,883 m a.s.l. (24 h). Mature blood cells, ECs, and CPCs were assessed by a hematology analyzer and flow cytometry, respectively. The presence of matrix metalloproteinases (MMPs), their activity, and hematopoietic cytokines were assessed in serum and plasma. EC and CPC concentrations significantly decreased after exercise (p = 0.019, p = 0.007, respectively). CPCs remained low until the next morning (24 h, p = 0.002), while EC concentrations returned back to baseline. MMP-9 decreased at arrival (p = 0.021), stayed low postexercise (p = 0.033), and returned to baseline at 24 h (p = 0.035 to postexercise). MMP-activity did not change throughout the study. Circulating MMP-9 concentrations, but not MMP-activity, were associated with EC concentrations (r rm = 0.48, p = 0.010). CPC concentrations were not linked to hematopoietic cytokines. Acute exercise at high altitude attenuated endothelial shedding, but did not enhance regenerative CPCs. Results were not linked to endothelial matrix remodeling or CPC mobilization. These results provide information to better understand the endothelium and immature immune system during an active, short-term sojourn at high altitude.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。