Protein catalyzed capture agents with tailored performance for in vitro and in vivo applications

针对体外和体内应用具有定制性能的蛋白质催化捕获剂

阅读:9
作者:Matthew B Coppock, Candice R Warner, Brandi Dorsey, Joshua A Orlicki, Deborah A Sarkes, Bert T Lai, Suresh M Pitram, Rosemary D Rohde, Jacquie Malette, Jeré A Wilson, Paul Kearney, Kenneth C Fang, Scott M Law, Sherri L Candelario, Blake Farrow, Amethist S Finch, Heather D Agnew, James R Heath, Dimit

Abstract

We report on peptide-based ligands matured through the protein catalyzed capture (PCC) agent method to tailor molecular binders for in vitro sensing/diagnostics and in vivo pharmacokinetics parameters. A vascular endothelial growth factor (VEGF) binding peptide and a peptide against the protective antigen (PA) protein of Bacillus anthracis discovered through phage and bacterial display panning technologies, respectively, were modified with click handles and subjected to iterative in situ click chemistry screens using synthetic peptide libraries. Each azide-alkyne cycloaddition iteration, promoted by the respective target proteins, yielded improvements in metrics for the application of interest. The anti-VEGF PCC was explored as a stable in vivo imaging probe. It exhibited excellent stability against proteases and a mean elimination in vivo half-life (T1/2 ) of 36 min. Intraperitoneal injection of the reagent results in slow clearance from the peritoneal cavity and kidney retention at extended times, while intravenous injection translates to rapid renal clearance. The ligand competed with the commercial antibody for binding to VEGF in vivo. The anti-PA ligand was developed for detection assays that perform in demanding physical environments. The matured anti-PA PCC exhibited no solution aggregation, no fragmentation when heated to 100°C, and > 81% binding activity for PA after heating at 90°C for 1 h. We discuss the potential of the PCC agent screening process for the discovery and enrichment of next generation antibody alternatives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。