Combined effects of resistance training and calorie restriction on mitochondrial fusion and fission proteins in rat skeletal muscle

阻力训练和热量限制对大鼠骨骼肌线粒体融合和裂变蛋白的综合影响

阅读:7
作者:Yu Kitaoka, Koichi Nakazato, Riki Ogasawara

Abstract

Recent studies have demonstrated that resistance exercise leads not only to muscle hypertrophy, but it also improves mitochondrial function. Because calorie restriction (CR) has been suggested as a way to induce mitochondrial biogenesis, we examined the effects of resistance training with or without CR on muscle weight and key mitochondrial parameters in rat skeletal muscle. Four weeks of resistance training (thrice/wk) resulted in increased gastrocnemius muscle weight by 14% in rats fed ad libitum (AL). The degree of muscle-weight increase via resistance training was lower in rats with CR (7.4%). CR showed no effect on phosphorylation of mammalian target of rapamycin (mTOR) signaling proteins rpS6 and ULK1. Our results revealed that CR resulted in elevated levels of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein, a known master regulator of mitochondrial biogenesis. Resistance training alone also resulted in increased PGC-1α levels in skeletal muscle. The magnitude of the increase in PGC-1α was similar in rats in both the CR and AL groups. Moreover, we found that resistance training with CR resulted in elevated levels of proteins involved in mitochondrial fusion (Opa1 and Mfn1), and oxidative phosphorylation, whereas there was no effect of CR on the fission-regulatory proteins Fis1 and Drp1. These results indicate that CR attenuates resistance training-induced muscle hypertrophy, and that it may enhance mitochondrial adaptations in skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。