Microglia-specific knock-out of NF-κB/IKK2 increases the accumulation of misfolded α-synuclein through the inhibition of p62/sequestosome-1-dependent autophagy in the rotenone model of Parkinson's disease

在帕金森病鱼藤酮模型中,小胶质细胞特异性敲除 NF-κB/IKK2 可通过抑制 p62/sequestosome-1 依赖性自噬增加错误折叠的 α-突触核蛋白的积累

阅读:5
作者:Savannah M Rocha, Kelly S Kirkley, Debotri Chatterjee, Tawfik A Aboellail, Richard J Smeyne, Ronald B Tjalkens

Abstract

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide, with a greater prevalence in men than women. The etiology of PD is largely unknown, although environmental exposures and neuroinflammation are linked to protein misfolding and disease progression. Activated microglia are known to promote neuroinflammation in PD, but how environmental agents interact with specific innate immune signaling pathways in microglia to stimulate conversion to a neurotoxic phenotype is not well understood. To determine how nuclear factor kappa B (NF-κB) signaling dynamics in microglia modulate neuroinflammation and dopaminergic neurodegeneration, we generated mice deficient in NF-κB activation in microglia (CX3CR1-Cre::IKK2fl/fl ) and exposed them to 2.5 mg/kg/day of rotenone for 14 days, followed by a 14-day post-lesioning incubation period. We postulated that inhibition of NF-κB signaling in microglia would reduce overall inflammatory injury in lesioned mice. Subsequent analysis indicated decreased expression of the NF-κB-regulated autophagy gene, sequestosome 1 (p62), in microglia, which is required for targeting ubiquitinated α-synuclein (α-syn) for lysosomal degradation. Knock-out animals had increased accumulation of misfolded α-syn within microglia, despite an overall reduction in neurodegeneration. Interestingly, this occurred more prominently in males. These data suggest that microglia play key biological roles in the degradation and clearance of misfolded α-syn and this process works in concert with the innate immune response associated with neuroinflammation. Importantly, the accumulation of misfolded α-syn protein aggregates alone did not increase neurodegeneration following exposure to rotenone but required the NF-κB-dependent inflammatory response in microglia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。