Aerobic exercise, but not metformin, prevents reduction of muscular performance by AMPk activation in mice on doxorubicin chemotherapy

有氧运动(而非二甲双胍)可防止接受阿霉素化疗的小鼠因 AMPk 激活而导致的肌肉性能下降

阅读:5
作者:Edson A de Lima, Luís G O de Sousa, Alexandre Abilio de S Teixeira, Andrea G Marshall, Nelo E Zanchi, José C Rosa Neto

Abstract

Doxorubicin (DOX) is a chemotherapy agent widely used in clinical practice, and it is very efficient in tumor suppression, but the use of DOX is limited by a strong association with the development of severe muscle atrophy and cardiotoxicity effects. Reversion or neutralization of the muscular atrophy can lead to a better prognosis. Recent studies have proposed that the negative effect of DOX on skeletal muscle is linked to its inhibition of AMP-activated protein kinase (AMPk), a key mediator of cellular metabolism. On the basis of this, our goal was to evaluate if aerobic exercise or metformin treatment, activators of AMPk, would be able to attenuate the deleterious effects on skeletal muscle induced by the DOX treatment. C57BL6 mice received either saline (control) or DOX (2.5 mg/kg body weight) intraperitoneally, twice a week. The animals on DOX were further divided into groups that received adjuvant treatment in the form of moderate aerobic physical exercise (DOX+T) or metformin gavage (300 mg/body weight/day). Body weight, metabolism, distance run, muscle fiber cross-sectional area (CSA), and protein synthesis and degradation were assessed. We demonstrated that aerobic training, but not metformin, associated with DOX increased the maximal aerobic capacity without changing muscle mass or fiber CSA, rescuing the muscle fatigue observed with DOX treatment alone. This improvement was associated with AMPk activation, thus surpassing the negative effects of DOX on muscle performance and bioenergetics. In conclusion, aerobic exercise increases AMPk activation and improved the skeletal muscle function, reducing the side effects of DOX.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。