Conclusions
κ opioid receptors were up-regulated and played a critical role in brain ischemia and reperfusion. κ opioid receptor activation could potentially protect the brain and improve neurologic outcome via blood-brain barrier protection, apoptosis reduction, and inflammation inhibition.
Results
Infarct volume, κ opioid receptor expression, and Evans blue extravasation in the brain, and neurobehavioral outcome were determined. Immunohistochemistry and western blot were performed to detect the activated caspase-3, interleukin-10, and tumor necrosis factor-α levels to investigate the role of apoptosis and inflammation. κ opioid receptor expression was elevated significantly in the ischemic penumbral area compared with that in the nonischemic area. Salvinorin A reduced infarct volume and improved neurologic deficits dose-dependently. Salvinorin A at the dose of 50 μg/kg reduced Evans blue extravasation, suggesting reduced impairment of the blood-brain barrier and decreased the expression of cleaved caspase-3, interleukin-10, and tumor necrosis factor-α in the penumbral areas. All these changes were blocked or alleviated by norbinaltorphimine. Conclusions: κ opioid receptors were up-regulated and played a critical role in brain ischemia and reperfusion. κ opioid receptor activation could potentially protect the brain and improve neurologic outcome via blood-brain barrier protection, apoptosis reduction, and inflammation inhibition.
