Focal adhesion-mediated directional cell migration guided by gradient-stretched substrate

梯度拉伸基质引导的粘着斑介导的定向细胞迁移

阅读:4
作者:Zijia Chen, Xiaoning Han, Bo Che, Huiping Feng, Yue Zhou, Linhong Deng, Xiang Wang

Abstract

Soft tissues experience strain under mechanical stresses, storing energy as residual stresses and strain energy. However, the specific impact of such strain on cell migration and its molecular mechanisms remains unclear. In this study, we investigated this by using polydimethylsiloxane (PDMS) membranes with varying prestrain levels but constant stiffness to mimic tissue-like conditions. Results showed that higher prestrain levels enhanced 3T3 fibroblast adhesion and reduced filopodia formation. Elevated prestrain also increased integrin and vinculin expression, which was associated with lower cell migration rates. Notably, both 3T3 fibroblasts and primary rat airway smooth muscle cells migrated faster toward higher prestrain areas on substrates with strain gradients. Knockdown of integrin or vinculin inhibited 3T3 cell migration directionality, highlighting their critical role. This research reveals a mechanobiological pathway where strain gradients direct cell migration, providing insight into a common mechanotransduction pathway influencing cellular responses to both stiffness and strain-related mechanical cues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。