Synergistic Effect of QNZ, an Inhibitor of NF-κB Signaling, and Bone Morphogenetic Protein 2 on Osteogenic Differentiation in Mesenchymal Stem Cells through Fibroblast-Induced Yes-Associated Protein Activation

NF-κB信号通路抑制剂QNZ与骨形态发生蛋白2通过成纤维细胞诱导的Yes相关蛋白激活对间充质干细胞成骨分化的协同作用

阅读:2
作者:Fei Huang ,Hai Wang ,Ying Zhang ,Guozhen Wei ,Yun Xie ,Gui Wu

Abstract

Biomaterials carrying recombinant human bone morphogenetic protein 2 (BMP2) have been developed to enhance bone regeneration in the treatment of bone defects. However, various reports have shown that in the bone repair microenvironment, fibroblasts can inhibit BMP2-induced osteogenic differentiation in mesenchymal stem cells (MSCs). Thus, factors that can target fibroblasts and improve BMP2-mediated osteogenesis should be explored. In this project, we focused on whether or not an inhibitor of the NF-κB signaling pathway, QNZ (EVP4593), could play a synergistic role with BMP2 in osteogenesis by regulating the activity of fibroblasts. The roles of QNZ in regulating the proliferation and migration of fibroblasts were examined. In addition, the effect of QNZ combined with BMP2 on the osteogenic differentiation of MSCs was evaluated both in vitro and in vivo. Furthermore, the detailed mechanisms by which QNZ improved BMP2-mediated osteogenesis through the modulation of fibroblasts were analyzed and revealed. Interestingly, we found that QNZ inhibited the proliferation and migration of fibroblasts. Thus, QNZ could relieve the inhibitory effects of fibroblasts on the homing and osteogenic differentiation of mesenchymal stem cells. Furthermore, biomaterials carrying both QNZ and BMP2 showed better osteoinductivity than did those carrying BMP2 alone both in vitro and in vivo. It was found that the mechanism of QNZ involved reactivating YAP activity in mesenchymal stem cells, which was inhibited by fibroblasts. Taken together, our results suggest that QNZ may be a candidate factor for assisting BMP2 in inducing osteogenesis. The combined application of QNZ and BMP2 in biomaterials may be promising for the treatment of bone defects in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。