Contribution of TGF-β1 and Effects of Gene Silencer Pyrrole-Imidazole Polyamides Targeting TGF-β1 in Diabetic Nephropathy

TGF-β1在糖尿病肾病中的作用及靶向TGF-β1基因沉默剂吡咯-咪唑聚酰胺的影响

阅读:6
作者:Shu Horikoshi, Noboru Fukuda, Akiko Tsunemi, Makiyo Okamura, Masari Otsuki, Morito Endo, Masanori Abe

Abstract

TGF-β1 has been known to induce diabetic nephropathy with renal fibrosis and glomerulosclerosis. DNA-recognized peptide compound pyrrole-imidazole (PI) polyamides as novel biomedicines can strongly bind promoter lesions of target genes to inhibit its transcription. We have developed PI polyamide targeting TGF-β1 for progressive renal diseases. In the present study, we evaluated the contribution of TGF-β1 in the pathogenesis of diabetic nephropathy, and examined the effects of PI polyamide targeting TGF-β1 on the progression of diabetic nephropathy in rats. For in vitro experiments, rat renal mesangial cells were incubated with a high (25 mM) glucose concentration. Diabetic nephropathy was established in vivo in eight-week-old Wistar rats by intravenously administering 60 mg/kg streptozotocin (STZ). We examined the effects of PI polyamide targeting TGF-β1 on phenotype and the growth of mesangial cells, in vitro, and the pathogenesis of diabetic nephropathy in vivo. High glucose significantly increased expression of TGF-β1 mRNA, changed the phenotype to synthetic, and increased growth of mesangial cells. STZ diabetic rats showed increases in urinary excretions of protein and albumin, glomerular and interstitial degenerations, and podocyte injury. Treatment with PI polyamide targeting TGF-β1 twice weekly for three months improved the glomerular and interstitial degenerations by histological evaluation. Treatment with PI polyamide improved podocyte injury by electron microscopy evaluation. These findings suggest that TGF-β1 may be a pivotal factor in the progression of diabetic nephropathy, and PI polyamide targeting TGF-β1 as a practical medicine may improve nephropathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。