UV-A/B radiation rapidly activates photoprotective mechanisms in Chlamydomonas reinhardtii

UV-A/B 辐射迅速激活莱茵衣藻的光保护机制

阅读:6
作者:Ryutaro Tokutsu, Konomi Fujimura-Kamada, Tomohito Yamasaki, Keisuke Okajima, Jun Minagawa

Abstract

Conversion of light energy into chemical energy through photosynthesis in the chloroplasts of photosynthetic organisms is essential for photoautotrophic growth, and non-photochemical quenching (NPQ) of excess light energy prevents the generation of reactive oxygen species and maintains efficient photosynthesis under high light. In the unicellular green alga Chlamydomonas reinhardtii, NPQ is activated as a photoprotective mechanism through wavelength-specific light signaling pathways mediated by the phototropin (blue light) and ultra-violet (UV) light photoreceptors, but the biological significance of photoprotection activation by light with different qualities remains poorly understood. Here, we demonstrate that NPQ-dependent photoprotection is activated more rapidly by UV than by visible light. We found that induction of gene expression and protein accumulation related to photoprotection was significantly faster and greater in magnitude under UV treatment compared with that under blue- or red-light treatment. Furthermore, the action spectrum of UV-dependent induction of photoprotective factors implied that C. reinhardtii senses relatively long-wavelength UV (including UV-A/B), whereas the model dicot plant Arabidopsis (Arabidopsis thaliana) preferentially senses relatively short-wavelength UV (mainly UV-B/C) for induction of photoprotective responses. Therefore, we hypothesize that C. reinhardtii developed a UV response distinct from that of land plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。