Research on the mechanism of Ursolic acid for treating Parkinson's disease by network pharmacology and experimental verification

网络药理学及实验验证熊果酸治疗帕金森病的作用机制研究

阅读:11
作者:Ao Sun, Yu-Fei Li, Yang Miao, Hong-Xia Wang, Lin-Lin Zhang

Abstract

The objective of this study was to investigate the potential targets and mechanisms of UA in the treatment of PD. The efficacy of UA in PD was assessed through network pharmacology, molecular docking, and experimental methods. Common target protein-protein interaction (PPI) networks were constructed and visualized using Cytoscape. As a result, 9 key genes, namely CASP3, IL6, IL1B, PTGS2, CREB1, TNF, MAPK3, JUN, and CASP8, were selected. Molecular docking simulations were performed using Discovery Studio 2019 to validate the correlation between UA and the core targets. The results demonstrated a favorable binding affinity between UA and CASP8, IL1B, CASP3, TNF, MAPK3 and IL6. In vivo studies showed UA ameliorated motor dysfunction, and UA can significantly increase the protein expression of tyrosine hydroxylase (TH) in PD mice model. In addition, in vitro experiments confirmed that UA effectively reduced the protein expression of CASP8, CASP3 and MAPK3 in PD cell models and suppressed the gene expression of TNF-α, IL-6, and IL-1β. These findings indicate that the therapeutic effects of UA on PD could be due to its influence on various targets within both the apoptosis and neuroinflammatory signaling pathways. Consequently, this study provides a methodological and theoretical foundation for further elucidating the pharmacological mechanism of UA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。