Antiviral activity of ISG15 against classical swine fever virus replication in porcine alveolar macrophages via inhibition of autophagy by ISGylating BECN1

ISG15 通过抑制 BECN1 的自噬来发挥抗病毒作用,从而对抗猪瘟病毒在猪肺泡巨噬细胞中的复制

阅读:7
作者:Cheng Li, Yifan Wang, Hongqing Zheng, Wang Dong, Huifang Lv, Jihui Lin, Kangkang Guo, Yanming Zhang

Abstract

Interferons (IFNs) induce the expression of interferon-stimulated genes (ISGs) for defense against numerous viral infections, including classical swine fever virus (CSFV). However, the mechanisms underlying the effect of ISGs on CSFV infection are rarely reported. In this study, we demonstrate that IFN-α treatment induces upregulation of ISG15 and thus attenuates CSFV replication. To determine whether ISG15 is critical for controlling CSFV replication, we established porcine alveolar macrophages (PAMs) with stable overexpression or knockdown of ISG15. Overexpression of Flag-ISG15 significantly prevented CSFV replication, whereas loss of ISG15 led to abnormal proliferation of CSFV. Furthermore, upregulated ISG15 promoted beclin-1 (BECN1) ISGylation and dysfunction and subsequently inhibited autophagy, which is indispensable for CSFV replication. In addition, HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5), which functions to catalyze conjugation of ISG15 protein, was confirmed to interact with BECN1. Collectively, these results indicate that IFN-α restricts CSFV replication through ISG15-mediated BECN1 ISGylation and autophagy inhibition, providing insight into the mechanism of CSFV replication control by type I IFN. This mechanism may not be the only antiviral mechanism of ISG15; nonetheless, this study may contribute to the development of CSFV treatment and prevention strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。