Three-stage biochemical selection: cloning of prototype class IIS/IIC/IIG restriction endonuclease-methyltransferase TsoI from the thermophile Thermus scotoductus

三阶段生化选择:从嗜热菌 Thermus scotoductus 中克隆原型 IIS/IIC/IIG 类限制性内切酶甲基转移酶 TsoI

阅读:7
作者:Piotr M Skowron, Jolanta Vitkute, Danute Ramanauskaite, Goda Mitkaite, Joanna Jezewska-Frackowiak, Joanna Zebrowska, Agnieszka Zylicz-Stachula, Arvydas Lubys

Background

In continuing our research into the new family of bifunctional restriction endonucleases (REases), we describe the cloning of the tsoIRM gene. Currently, the family includes six thermostable enzymes: TaqII, Tth111II, TthHB27I, TspGWI, TspDTI, TsoI, isolated from various Thermus sp. and two thermolabile enzymes: RpaI and CchII, isolated from mesophilic bacteria Rhodopseudomonas palustris and Chlorobium chlorochromatii, respectively. The enzymes have several properties in common. They are large proteins (molecular size app. 120 kDa), coded by fused genes, with the REase and methyltransferase (MTase) in a single polypeptide, where both activities are affected by S-adenosylmethionine (SAM). They recognize similar asymmetric cognate sites and cleave at a distance of 11/9 nt from the recognition site. Thus far, we have cloned and characterised TaqII, Tth111II, TthHB27I, TspGWI and TspDTI.

Conclusions

Previously we identified and cloned the Thermus family RM genes using a specially developed method based on partial proteolysis of thermostable REases. In the case of TsoI the classic biochemical selection method was successful, probably because of the substantially lower optimal reaction temperature of TsoI (app. 10-15°C). That allowed for sufficient MTase activity in vivo in recombinant E. coli. Interestingly, TsoI originates from bacteria with a high optimum growth temperature of 67°C, which indicates that not all bacterial enzymes match an organism's thermophilic nature, and yet remain functional cell components. Besides basic research advances, the cloning and characterisation of the new prototype REase from the Thermus sp. family enzymes is also of practical importance in gene manipulation technology, as it extends the range of available DNA cleavage specificities.

Results

TsoI REase, which originate from thermophilic Thermus scotoductus RFL4 (T. scotoductus), was cloned in Escherichia coli (E. coli) using two rounds of biochemical selection of the T. scotoductus genomic library for the TsoI methylation phenotype. DNA sequencing of restriction-resistant clones revealed the common open reading frame (ORF) of 3348 bp, coding for a large polypeptide of 1116 aminoacid (aa) residues, which exhibited a high level of similarity to Tth111II (50% identity, 60% similarity). The ORF was PCR-amplified, subcloned into a pET21 derivative under the control of a T7 promoter and was subjected to the third round of biochemical selection in order to isolate error-free clones. Induction experiments resulted in synthesis of an app. 125 kDa protein, exhibiting TsoI-specific DNA cleavage. Also, the wild-type (wt) protein was purified and reaction optima were determined. Conclusions: Previously we identified and cloned the Thermus family RM genes using a specially developed method based on partial proteolysis of thermostable REases. In the case of TsoI the classic biochemical selection method was successful, probably because of the substantially lower optimal reaction temperature of TsoI (app. 10-15°C). That allowed for sufficient MTase activity in vivo in recombinant E. coli. Interestingly, TsoI originates from bacteria with a high optimum growth temperature of 67°C, which indicates that not all bacterial enzymes match an organism's thermophilic nature, and yet remain functional cell components. Besides basic research advances, the cloning and characterisation of the new prototype REase from the Thermus sp. family enzymes is also of practical importance in gene manipulation technology, as it extends the range of available DNA cleavage specificities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。