Deficiency of the sphingosine-1-phosphate (S1P) transporter Mfsd2b protects the heart against hypertension-induced cardiac remodeling by suppressing the L-type-Ca2+ channel

鞘氨醇-1-磷酸 (S1P) 转运蛋白 Mfsd2b 缺乏可通过抑制 L 型 Ca2+ 通道保护心脏免受高血压引起的心脏重塑

阅读:6
作者:Dragos Andrei Duse, Nathalie Hannelore Schröder, Tanu Srivastava, Marcel Benkhoff, Jens Vogt, Melissa Kim Nowak, Florian Funk, Nina Semleit, Philipp Wollnitzke, Ralf Erkens, Sebastian Kötter, Sven Günther Meuth, Petra Keul, Webster Santos, Amin Polzin, Malte Kelm, Martina Krüger, Joachim Schmitt, Bo

Abstract

The erythrocyte S1P transporter Mfsd2b is also expressed in the heart. We hypothesized that S1P transport by Mfsd2b is involved in cardiac function. Hypertension-induced cardiac remodeling was induced by 4-weeks Angiotensin II (AngII) administration and assessed by echocardiography. Ca2+ transients and sarcomere shortening were examined in adult cardiomyocytes (ACM) from Mfsd2b+/+ and Mfsd2b-/- mice. Tension and force development were measured in skinned cardiac fibers. Myocardial gene expression was determined by real-time PCR, Protein Phosphatase 2A (PP2A) by enzymatic assay, and S1P by LC/MS, respectively. Msfd2b was expressed in the murine and human heart, and its deficiency led to higher cardiac S1P. Mfsd2b-/- mice had regular basal cardiac function but were protected against AngII-induced deterioration of left-ventricular function as evidenced by ~ 30% better stroke volume and cardiac index, and preserved ejection fraction despite similar increases in blood pressure. Mfsd2b-/- ACM exhibited attenuated Ca2+ mobilization in response to isoprenaline whereas contractility was unchanged. Mfsd2b-/- ACM showed no changes in proteins responsible for Ca2+ homeostasis, and skinned cardiac fibers exhibited reduced passive tension generation with preserved contractility. Verapamil abolished the differences in Ca2+ mobilization between Mfsd2b+/+ and Mfsd2b-/- ACM suggesting that S1P inhibits L-type-Ca2+ channels (LTCC). In agreement, intracellular S1P activated the inhibitory LTCC phosphatase PP2A in ACM and PP2A activity was increased in Mfsd2b-/- hearts. We suggest that myocardial S1P protects from hypertension-induced left-ventricular remodeling by inhibiting LTCC through PP2A activation. Pharmacologic inhibition of Mfsd2b may thus offer a novel approach to heart failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。