Polydatin Improves Sepsis-Associated Encephalopathy by Activating Sirt1 and Reducing p38 Phosphorylation

白藜芦醇苷通过激活 Sirt1 和降低 p38 磷酸化改善脓毒症相关脑病

阅读:5
作者:Lin Huang, Jiawei Chen, Xiaojie Li, Mingxin Huang, Jilou Liu, Na Qin, Zhenhua Zeng, Xingmin Wang, Fen Li, Hong Yang

Conclusions

This study, to the best of our knowledge, is the first to demonstrate that PD alleviates SAE, at least partially, by upregulating Sir1-mediated neuroinflammation inhibition and mitochondrial function protection.

Methods

In this study, we constructed an SAE mouse model by cecal ligation and puncture (CLP) and measured Sirt1 protein activity, p38 phosphorylation, brain tissue pathological damage, pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), mitochondrial function (mitochondrial membrane potential, ATP content, and reactive oxygen species), neurological function, and animal survival time. Sirt1 selective inhibitor Ex527 and p38 inhibitor SB203580 were used to explore the possible mechanism of PD in SAE.

Results

We confirmed that PD inhibits neuroinflammation evidenced by reduced proinflammatory cytokines. In addition, PD protects mitochondria as demonstrated by restored mitochondrial membrane potential and adenosine triphosphate (ATP) content, and decreased reactive oxygen species (ROS) level. As we expected, p38 inhibition reduces neuroinflammation and mitochondrial damage. In contrast, Sirt1 inhibition aggravates cerebral cortex mitochondrial damage and neuroinflammation and promotes phosphorylation of p38. Mechanistically, PD treatment suppressed p38 phosphorylation and consequently reduced the neuroinflammatory response, and these effects were blocked by the Sirt selective inhibitor Ex527. Conclusions: This study, to the best of our knowledge, is the first to demonstrate that PD alleviates SAE, at least partially, by upregulating Sir1-mediated neuroinflammation inhibition and mitochondrial function protection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。