A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements

基于 SILAC 的 DNA 蛋白质相互作用筛选,可识别功能性 DNA 元素的候选结合蛋白

阅读:6
作者:Gerhard Mittler, Falk Butter, Matthias Mann

Abstract

Determining the underlying logic that governs the networks of gene expression in higher eukaryotes is an important task in the post-genome era. Sequence-specific transcription factors (TFs) that can read the genetic regulatory information and proteins that interpret the information provided by CpG methylation are crucial components of the system that controls the transcription of protein-coding genes by RNA polymerase II. We have previously described Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for the quantitative comparison of proteomes and the determination of protein-protein interactions. Here, we report a generic and scalable strategy to uncover such DNA protein interactions by SILAC that uses a fast and simple one-step affinity capture of TFs from crude nuclear extracts. Employing mutated or nonmethylated control oligonucleotides, specific TFs binding to their wild-type or methyl-CpG bait are distinguished from the vast excess of copurifying background proteins by their peptide isotope ratios that are determined by mass spectrometry. Our proof of principle screen identifies several proteins that have not been previously reported to be present on the fully methylated CpG island upstream of the human metastasis associated 1 family, member 2 gene promoter. The approach is robust, sensitive, and specific and offers the potential for high-throughput determination of TF binding profiles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。