Targeted immunomodulation therapy for cardiac repair by platelet membrane engineering extracellular vesicles via hitching peripheral monocytes

血小板膜工程胞外囊泡连接外周单核细胞进行心脏修复的靶向免疫调节治疗

阅读:5
作者:Qiyu Li, Zheyong Huang, Qiaozi Wang, Jinfeng Gao, Jing Chen, Haipeng Tan, Su Li, Zhengmin Wang, Xueyi Weng, Hongbo Yang, Zhiqing Pang, Yanan Song, Juying Qian, Junbo Ge

Abstract

Immune regulation therapies have been considered promising in the treatment of myocardial ischemia reperfusion (MI/R) injury. Mesenchymal stem cells derived extracellular vesicles (MSC-EVs) are of great potential for immune modulation by reprogramming macrophages but their therapeutic efficacy is hindered by insufficient targeting ability in vivo. Herein, we introduced the platelet membrane modified EVs (P-EVs) based on membrane fusion method to mimic the binding ability of platelets to monocytes. In the mouse model of MI/R injury, the intravenously injected P-EVs were mainly carried by circulating monocytes into the ischemic myocardium. In the inflammatory microenvironment, those monocytes subsequently differentiated into macrophages with enhanced phagocytosis, which probably promoted in-situ endocytosis of the superficial P-EVs by monocytes differentiated macrophages in large quantities. Then, the P-EVs successfully escaped from the macrophage lysosome and released the functional microRNAs (miRNAs) into the cytosol which facilitated the inflammatory macrophages (M1 phenotype) reprogramming to reparative macrophages (M2 phenotype). Finally, the immune microenvironment was regulated to realize cardiac repair. Thus, we supposed that the most likely delivery method was that monocytes mediated P-EVs migration into ischemic myocardium where P-EVs were mainly in-situ endocytosed by monocytes derived macrophages, which holds potential for immunoregulation on MI/R and other immune-related diseases in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。