Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway

黄芩苷通过 Nrf2 和 MAPK 信号通路减轻糖尿病肾病的氧化应激和炎症

阅读:9
作者:Leyi Ma #, Fan Wu #, Qingqing Shao, Guang Chen, Lijun Xu, Fuer Lu

Background

Oxidative stress and inflammation play essential roles in the development and progression of diabetic nephropathy (DN). Baicalin (BAI), a natural flavonoid, has been showed to have a renoprotective effect in various renal diseases. However, its underlying mechanisms in DN remain unclear. In this study, we explored the potential effects and underlying mechanisms of BAI on DN using a spontaneous DN model.

Conclusion

In summary, our data demonstrated that BAI can treat DN by alleviating oxidative stress and inflammation, and its underlying mechanisms were associated with the activation of Nrf2-mediated antioxidant signaling pathway and the inhibition of MAPK-mediated inflammatory signaling pathway.

Methods

The protective effects of BAI on DN have been evaluated by detecting DN-related biochemical indicators, kidney histopathology and cell apoptosis. After that, we examined the level of renal oxidative stress and inflammation to explain BAI's renoprotective effects. Then, Nrf2 pathway was tested to clarify its antioxidant activity, and kidney transcriptomics was conducted to elucidate its anti-inflammatory activity. Finally, Western blot was applied for final mechanism verification.

Results

Our results found that BAI effectively ameliorated diabetic conditions, proteinuria, renal histopathological changes and cell apoptosis in DN. BAI significantly improved the kidney levels of glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and catalase (CAT), and reduced malondialdehyde (MDA) level. Meanwhile, the infiltration of inflammatory cells including T-lymphocytes, T-helper cells, neutrophils and macrophages, and the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6, MCP-1 and TNFα) were also obviously inhibited by BAI. Afterward, Western blot found that BAI significantly activated Nrf2 signaling and increased the expression of downstream antioxidant enzymes (HO-1, NQO-1). Kidney transcriptomics revealed that the inhibition of MAPK signaling pathway may contribute to BAI's anti-inflammatory activity, which has also been verified in later experiment. BAI treatment did obviously inhibit the activation of canonical pro-inflammatory signaling pathway MAPK family, such as Erk1/2, JNK and P38.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。