The family of 14-3-3 proteins and specifically 14-3-3σ are up-regulated during the development of renal pathologies

14-3-3 蛋白家族,特别是 14-3-3σ 在肾脏病理发展过程中上调

阅读:6
作者:Myrto Rizou, Eleni A Frangou, Filio Marineli, Niki Prakoura, Jerome Zoidakis, Harikleia Gakiopoulou, George Liapis, Panagiotis Kavvadas, Christos Chatziantoniou, Manousos Makridakis, Antonia Vlahou, John Boletis, Demetrios Vlahakos, Dimitrios Goumenos, Evgenios Daphnis, Christos Iatrou, Aristidis S

Abstract

Chronic kidney disease, the end result of most renal and some systemic diseases, is a common condition where renal function is compromised due to fibrosis. During renal fibrosis, calreticulin, a multifunctional chaperone of the endoplasmic reticulum (ER) is up-regulated in tubular epithelial cells (TECs) both in vitro and in vivo. Proteomic analysis of cultured TECs overexpressing calreticulin led to the identification of the family of 14-3-3 proteins as key proteins overexpressed as well. Furthermore, an increased expression in the majority of 14-3-3 family members was observed in 3 different animal models of renal pathologies: the unilateral ureteric obstruction, the nephrotoxic serum administration and the ischaemia-reperfusion. In all these models, the 14-3-3σ isoform (also known as stratifin) was predominantly overexpressed. As in all these models ischaemia is a common denominator, we showed that the ischaemia-induced transcription factor HIF1α is specifically associated with the promoter region of the 14-3-3σ gene. Finally, we evaluated the expression of the family of 14-3-3 proteins and specifically 14-3-3σ in biopsies from IgA nephropathy and membranous nephropathy patients. These results propose an involvement of 14-3-3σ in renal pathology and provide evidence for the first time that hypoxia may be responsible for its altered expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。