Altered migration and adhesion potential of pro-neurally converted human bone marrow stromal cells

神经转化的人类骨髓基质细胞的迁移和粘附潜力改变

阅读:8
作者:H-J Habisch, J Fiedler, A C Ludolph, A Storch, R E Brenner

Background

Bone marrow (BM)-derived mesenchymal stromal cells (MSC) are promising candidate cells for the development of neuroregenerative therapies. We have previously introduced the pro-neural conversion of human MSC to neural stem cell-like cells (m-NSC) by culturing them in suspension culture under serum-free conditions.

Discussion

We could identify major chemoattractive factors for m-NSC and gained partial insight into the complex processes involved in migration of neurally converted cells.

Methods

In the present study, we used a modified Boyden chamber assay to study the influence of various chemoattractants and extracellular matrix components on MSC and m-NSC migration in vitro. The underlying mechanisms were investigated further by applying real-time reverse transcriptase (RT)-polymerase chain reaction (PCR) and flow cytometry.

Results

The basal migration of m-NSC was significantly reduced compared with MSC (six versus 27 out of 10,000 cells migrated within 6 h). We evaluated the effects of bone morphogenic protein 2 (BMP2), insulin-like growth factor 1 (IGF1), platelet-derived growth factor bb (PDGFbb), vascular endothelial growth factor (VEGFa), and stromal cell-derived factor 1 (SDF1) on the migration potential of both cell types and PDGFbb proved to be the most potent stimulant of migration (235 versus 198 m-NSC or MSC migrated). Adhesion of m-NSC to the filter membrane was delayed and not affected by IGF1 or PDGFbb: 90% of MSC, but only 20% of m-NSC, adhered within 1 h, with 90% of m-NSC adhering within 3 h. However, real-time RT-PCR and flow cytometry revealed an up-regulation of the PDGF receptor B following conversion. Coating the membranes with collagen type I or hyaluronan also significantly influenced cell migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。