Optimizing a Solution Heat Treatment by Increasing the Cooling Rate of Directional Solidification for Ni-Based Superalloys

通过提高镍基高温合金定向凝固冷却速度来优化固溶热处理

阅读:4
作者:Yanbin Zhang, Ling Qin, Bin Zhu, Haijun Jiang, Li Tan, Taiwen Huang, Bin Gan, Ziqi Jie, Lin Liu

Abstract

The solution heat treatment (SHT) of the third generation of single crystal (SC) Ni-based superalloys required up to 45 h and was expensive. In this study, SHT based on liquid metal cooling (LMC) was optimized to greatly reduce processing time. The experimental and simulation results showed that residual segregation was evidently reduced, e.g., from 2.12 to 1.22 for the most heavily segregated Re. This led to a 16.7% increase in creep life, more uniform microstructures, and a decrease in solidification and homogenization porosity by a factor of 3.4. Structural refinement, approximately 0.32 times, served as the underlying mechanism for this optimization, which reduced diffusion distance and increased homogenization efficiency during SHT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。