Research on the Mechanism of HMGB1 Regulating Autoimmune Encephalomyelitis by Regulating NF- κ B

HMGB1调控NF- κ B调控自身免疫性脑脊髓炎的机制研究

阅读:4
作者:Lijuan Liu, Jingtao Pang, Hui Yuan, Shengnu Qiu, Wei Zhang, Zhenzhu Shang, Xiaoting Liu

Background

Autoimmune encephalomyelitis is a clinical condition in which memory and cognition is affected badly and is also associated with lower levels of consciousness or even coma in worse scenarios. It is a noninfectious condition which involves immune oriented inflammation.

Conclusion

According to the study's findings, there is indeed a link among increased miR-129-5p and decreased HMGB1 expression and also suppression of the TLR4/NF-κB signal transduction pathway in autoimmune encephalomyelitis in the miR-129-5p inhibitors group. As a result, we may assume the autoimmune disease illness has progressed once concentrations of HMGB1, TLR4/NF-κB, and miR-129-5p have decreased.

Methods

The expressions of HMGB1, miR-129-5p, and TLR4/NF-κB signalling pathway-related proteins were measured by qRT-PCR. To explore the differences among its control, models, and all groups, histopathology, immunohistochemistry, and immunofluorescence tests were performed.

Objective

The study's goal was to figure out what was causing the problem HMGB1 involved in regulating the autoimmune encephalomyelitis by regulating NF-κB. Materials and

Results

According to the findings, miR-129-5p is in charge of suppressing HMGB1 production and inhibiting the TLR4/NF-κB signalling pathway. On development of autoimmune encephalomyelitis, neurons in the hippocampus area got injured in the miR-129-5p inhibitors class. In the miR-129-5p inhibitor class, expression of miR-129-5p reduced and HMGB1 elevated, increasing neuronal inflammation and damage. Impairment in the hippocampus, on the either side, was shown to be reduced in HMGB1 shRNA, miR-129-5p mimics, and TLR4/NF-κB classes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。