Chlamydial plasmid-encoded virulence factor Pgp3 interacts with human cathelicidin peptide LL-37 to modulate immune response

衣原体质粒编码的毒力因子 Pgp3 与人类抗菌肽 LL-37 相互作用,调节免疫反应

阅读:5
作者:Shuping Hou, Xin Sun, Xiaohua Dong, Hui Lin, Lingli Tang, Min Xue, Guangming Zhong

Abstract

We have previously reported that Chlamydia trachomatis plasmid-encoded Pgp3 is able to neutralize anti-chlamydial activity of human cathelicidin peptide LL-37 by binding to and forming stable complex with LL-37. Besides its microbicidal activity, LL-37 also modulates immune response, including inducing cytokine/chemokine production in fibroblast/epithelial cells and recruitment of inflammatory cells. We now report that LL-37 was significantly induced in the genital tracts of women diagnosed positive for C. trachomatis. Both the LL-37-stimulated IL-6/8 production in human endometrial epithelial cells and the LL-37-induced neutrophil chemotaxis were blocked by Pgp3. Interestingly, although Pgp3 itself alone could not induce cytokines in epithelial cell cells, it did so in neutrophils. Importantly, the Pgp3 proinflammatory activity in neutrophils was significantly enhanced by forming complex with LL-37 although LL-37 alone failed to induce cytokine production in neutrophils. Thus, we have demonstrated that Pgp3 can modulate the proinflammatory activities of LL-37 on epithelial cells by forming stable complex with LL-37 but the Pgp3's own proinflammatory activity on myeloid cells is enhanced by forming the same complex. We hypothesize that Chlamydia may use Pgp3 to both block detrimental inflammation for improving its own fitness in the genital tract epithelial tissue and activate myeloid cell-mediated inflammation for potentially promoting spreading between the hosts, the latter of which may inevitably contribute to the development of inflammatory sequelae such as tubal fibrosis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。