Preserved Gut Microbial Diversity Accompanies Upregulation of TGR5 and Hepatobiliary Transporters in Bile Acid-Treated Animals Receiving Parenteral Nutrition

在接受肠外营养的胆汁酸治疗动物中,肠道微生物多样性得到保留,同时 TGR5 和肝胆转运蛋白得到上调

阅读:8
作者:Ajay Kumar Jain, Abhineet Sharma, Sumit Arora, Keith Blomenkamp, Ik Chan Jun, Robert Luong, David John Westrich, Aayush Mittal, Paula M Buchanan, Miguel A Guzman, John Long, Brent A Neuschwander-Tetri, Jeffery Teckman

Background

Parenteral nutrition (PN) is a lifesaving therapy but is associated with gut atrophy and cholestasis. While bile acids (BAs) can modulate intestinal growth via gut receptors, the gut microbiome likely influences gut proliferation and inflammation. BAs also regulate the bile salt export pump (BSEP) involved in cholestasis. We hypothesized that the BA receptor agonist oleanolic acid (OA) regulates gut TGR5 receptor and modulates gut microbiota to prevent PN-associated injury. Materials and

Conclusions

OA prevented PN-associated gut mucosal injury, Bacterioides expansion, and the decreased microbial diversity noted with PN. This study demonstrates a novel relationship among PN-associated gut dysfunction, BA treatment, and gut microbial changes.

Methods

Neonatal piglets were randomized to approximately 2 weeks of isocaloric enteral nutrition (EN), PN, or PN + enteral OA. Serum alanine aminotransferase, bilirubin, BAs, hepatic BSEP, gut TGR5, gut, liver morphology, and fecal microbiome utilizing 16S rRNA sequencing were evaluated. Kruskal-Wallis test, pairwise Mann-Whitney U test, and multilevel logistic regression analysis were performed.

Results

PN support resulted in gut atrophy substantially prevented by OA. The median (interquartile range) for villous/crypt ratio was as follows: EN, 3.37 (2.82-3.80); PN, 1.73 (1.54-2.27); and OA, 2.89 (2.17-3.34; P = .006). Pairwise comparisons yielded P = .002 (EN vs PN), P = .180 (EN vs OA), P = .026 (PN vs OA). OA upregulated TGR5 and BSEP without significant improvement in serum bilirubin ( P = .095). A decreased microbial diversity and shift toward proinflammatory phylum Bacteroidetes were seen with PN, which was prevented by OA. Conclusions: OA prevented PN-associated gut mucosal injury, Bacterioides expansion, and the decreased microbial diversity noted with PN. This study demonstrates a novel relationship among PN-associated gut dysfunction, BA treatment, and gut microbial changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。