Hypoxia via ERK Signaling Inhibits Hepatic PPARα to Promote Fatty Liver

缺氧通过 ERK 信号抑制肝脏 PPARα 促进脂肪肝

阅读:10
作者:Raja Gopal Reddy Mooli, Jessica Rodriguez, Shogo Takahashi, Sumeet Solanki, Frank J Gonzalez, Sadeesh K Ramakrishnan, Yatrik M Shah

Aims

Fatty liver or nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with comorbidities such as insulin resistance and cardiovascular and metabolic diseases. Chronic activation of hypoxic signaling, in particular, hypoxia-inducible factor (HIF)2α, promotes NAFLD progression by repressing genes involved in fatty acid β-oxidation through unclear mechanisms. Therefore, we assessed the precise mechanism by which HIF2α promotes fatty liver and its physiological relevance in metabolic homeostasis.

Background & aims

Fatty liver or nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with comorbidities such as insulin resistance and cardiovascular and metabolic diseases. Chronic activation of hypoxic signaling, in particular, hypoxia-inducible factor (HIF)2α, promotes NAFLD progression by repressing genes involved in fatty acid β-oxidation through unclear mechanisms. Therefore, we assessed the precise mechanism by which HIF2α promotes fatty liver and its physiological relevance in metabolic homeostasis.

Conclusions

Overall, our results demonstrate that ERK activated by hypoxia signaling plays a crucial role in fatty acid β-oxidation genes by repressing hepatocyte PPARα signaling.

Methods

Primary hepatocytes from VHL (VhlΔHep) and PPARα (Ppara-null) knockout mice that were loaded with fatty acids, murine dietary protocols to induce hepatic steatosis, and fasting-refeeding dietary regimen approaches were used to test our hypothesis.

Results

Inhibiting autophagy using chloroquine did not decrease lipid contents in VhlΔHep primary hepatocytes. Inhibition of ERK using MEK inhibitor decreased lipid contents in primary hepatocytes from a genetic model of constitutive HIF activation and primary hepatocytes loaded with free fatty acids. Moreover, MEK-ERK inhibition potentiated ligand-dependent activation of PPARα. We also show that MEK-ERK inhibition improved diet-induced hepatic steatosis, which is associated with the induction of PPARα target genes. During fasting, fatty acid β-oxidation is induced by PPARα, and refeeding inhibits β-oxidation. Our data show that ERK is involved in the post-prandial repression of hepatic PPARα signaling. Conclusions: Overall, our results demonstrate that ERK activated by hypoxia signaling plays a crucial role in fatty acid β-oxidation genes by repressing hepatocyte PPARα signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。