Potential Application of Saccharomyces cerevisiae and Rhizobium Immobilized in Multi Walled Carbon Nanotubes to Adsorb Hexavalent Chromium

酿酒酵母和根瘤菌固定在多壁碳纳米管中吸附六价铬的潜在应用

阅读:8
作者:T Sathvika, Amitesh Soni, Kriti Sharma, Malipeddi Praneeth, Manasi Mudaliyar, Vidya Rajesh, N Rajesh

Abstract

The presence of harmful contaminants in the waste stream is an important concern worldwide. The convergence of biotechnology and nanoscience offers a sustainable alternative in treating contaminated waters. Hexavalent chromium, being carcinogenic deserves effective and sustainable methods for sequestration. Here in, we report the immobilization of a prokaryote (Rhizobium) and eukaryote (Saccharomyces cerevisiae) in multiwalled carbon nanotubes (MWCNTs) for the effective adsorption of hexavalent chromium. The carboxylic groups were introduced into the MWCNTs during oxidation using potassium permanganate and were subjected to EDC-HOBT coupling to bind with microbial cell surface. FTIR, TGA, BET, FESEM-EDAX, HRTEM, XPS and confocal microscopy were the investigative techniques used to characterize the developed biosorbents. Experimental variables such as pH, adsorbent dosage, kinetics, isotherms and thermodynamics were investigated and it was observed that the system follows pseudo second order kinetics with a best fit for Langmuir isotherm. Electrostatic interactions between the functional groups in the microbial cell wall and hydrochromate anion at pH 2.0 propel the adsorption mechanism. The lab scale column studies were performed with higher volumes of the Cr(VI) contaminated water. Sodium hydroxide was used as the desorbing agent for reuse of the biosorbents. The sustainable biosorbents show prospects to treat chromium contaminated water.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。