Hinokitiol-iron complex is a ferroptosis inducer to inhibit triple-negative breast tumor growth

桧木酚-铁复合物是一种铁死亡诱导剂,可抑制三阴性乳腺肿瘤的生长

阅读:5
作者:Hongting Zhao #, Meng Zhang #, Jinghua Zhang, Zichen Sun, Wenxin Zhang, Weichen Dong, Chen Cheng, Yongzhong Yao, Kuanyu Li

Background

Ferroptosis is a unique cell death, dependent on iron and phospholipid peroxidation, involved in massive processes of physiopathology. Tremendous attention has been caught in oncology, particularly for those therapy-resistant cancers in the mesenchymal state prone to metastasis due to their exquisite vulnerability to ferroptosis. Therefore, a therapeutical ferroptosis inducer is now underway to be exploited.

Conclusions

When entering cells, the chelated iron by hinokitiol as a complex Fe(hino)3 is proposed to be redox-active to vigorously promote the production of free radicals via the Fenton reaction. Thus, Fe(hino)3 is a ferroptosis inducer and, therapeutically, exhibits anti-TNBC activity.

Results

A natural compound, hinokitiol (hino), has been considered to be an iron chelator. We have a novel finding that hino complexed with iron to form Fe(hino)3 can function as a ferroptosis inducer in vitro. The efficiency, compared with the same concentration of iron, increases nearly 1000 folds. Other iron chelators, ferroptosis inhibitors, or antioxidants can inhibit Fe(hino)3-induced ferroptosis. The complex Fe(hino)3 efficacy is further confirmed in orthotopic triple-negative breast cancer (TNBC) tumor models that Fe(hino)3 significantly boosted lipid peroxidation to induce ferroptosis and significantly reduced the sizes of TNBC cell-derived tumors. The drug's safety was also evaluated, and no detrimental side effects were found with the tested dosage. Conclusions: When entering cells, the chelated iron by hinokitiol as a complex Fe(hino)3 is proposed to be redox-active to vigorously promote the production of free radicals via the Fenton reaction. Thus, Fe(hino)3 is a ferroptosis inducer and, therapeutically, exhibits anti-TNBC activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。