Novel Biodegradable Nanoparticulate Chain-End Functionalized Polyhydroxybutyrate-Caffeic Acid with Multifunctionalities for Active Food Coatings

新型可生物降解纳米颗粒链端功能化聚羟基丁酸酯-咖啡酸,具有多功能性,可用于活性食品涂层

阅读:6
作者:Fady Abdelmalek, Marian Rofeal, Joanna Pietrasik, Alexander Steinbüchel

Abstract

The bioactivities of polyhydroxyalkanoates have been curtailed owing to the lack of bioactive functional groups in their backbones. In this regard, polyhydroxybutyrate (PHB) produced from new locally isolated Bacillus nealsonii ICRI16 was chemically modified for enhancing its functionality, stability as well as solubility. First, PHB was transformed to PHB-diethanolamine (PHB-DEA) by transamination. Subsequently, for the first time, the chain ends of the polymer were substituted by caffeic acid molecules (CafA), generating novel PHB-DEA-CafA. The chemical structure of such a polymer was confirmed by Fourier-transform infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (1H NMR). The modified polyester demonstrated improved thermal behavior compared to PHB-DEA as was shown by thermogravimetric analysis, derivative thermogravimetry, and differential scanning calorimetry analyses. Interestingly, 65% of PHB-DEA-CafA was biodegraded in a clay soil environment after 60 days at 25 °C, while 50% of PHB was degraded within the same period. On another avenue, PHB-DEA-CafA nanoparticles (NPs) were successfully prepared with an impressive mean particle size of 223 ± 0.12 nm and high colloidal stability. The nanoparticulate polyester had powerful antioxidant capacity with an IC50 of 32.2 mg/mL, which was the result of CafA loading in the polymer chain. More importantly, the NPs had a considerable effect on the bacterial behavior of four food pathogens, inhibiting 98 ± 0.12% of Listeria monocytogenes DSM 19094 after 48 h of exposure. Finally, the raw polish sausage coated with NPs had a significantly lower bacterial count of 2.11 ± 0.21 log cfu/g in comparison to other groups. When all these positive features are recognized, the polyester described herein could be considered as a good candidate for commercial active food coatings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。