Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization

ACKR3 C-Tail 在 β-Arrestin 募集、运输和内化中的差异参与

阅读:4
作者:Aurélien Zarca, Claudia Perez, Jelle van den Bor, Jan Paul Bebelman, Joyce Heuninck, Rianna J F de Jonker, Thierry Durroux, Henry F Vischer, Marco Siderius, Martine J Smit

Background

The atypical chemokine receptor 3 (ACKR3) belongs to the superfamily of G protein-coupled receptors (GPCRs). Unlike classical GPCRs, this receptor does not activate G proteins in most cell types but recruits β-arrestins upon activation. ACKR3 plays an important role in cancer and vascular diseases. As recruitment of β-arrestins is triggered by phosphorylation of the C-terminal tail of GPCRs, we studied the role of different potential phosphorylation sites within the ACKR3 C-tail to further delineate the molecular mechanism of internalization and trafficking of this GPCR.

Methods

We used various bioluminescence and fluorescence resonance energy transfer-based sensors and techniques in Human Embryonic Kidney (HEK) 293T cells expressing WT or phosphorylation site mutants of ACKR3 to measure CXCL12-induced recruitment of β-arrestins and G-protein-coupled receptor kinases (GRKs), receptor internalization and trafficking.

Results

Upon CXCL12 stimulation, ACKR3 recruits both β-arrestin 1 and 2 with equivalent kinetic profiles. We identified interactions with GRK2, 3 and 5, with GRK2 and 3 being important for β-arrestin recruitment. Upon activation, ACKR3 internalizes and recycles back to the cell membrane. We demonstrate that β-arrestin recruitment to the receptor is mainly determined by a single cluster of phosphorylated residues on the C-tail of ACKR3, and that residue T352 and in part S355 are important residues for β-arrestin1 recruitment. Phosphorylation of the C-tail appears essential for ligand-induced internalization and important for differential β-arrestin recruitment. GRK2 and 3 play a key role in receptor internalization. Moreover, ACKR3 can still internalize when β-arrestin recruitment is impaired or in the absence of β-arrestins, using alternative internalization pathways. Our data indicate that distinct residues within the C-tail of ACKR3 differentially regulate CXCL12-induced β-arrestin recruitment, ACKR3 trafficking and internalization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。