Fourier Transform Infrared Spectroscopy Monitoring of Dihydroartemisinin-Induced Growth Inhibition in Ovarian Cancer Cells and Normal Ovarian Surface Epithelial Cells

傅里叶变换红外光谱监测双氢青蒿素诱导的卵巢癌细胞和正常卵巢表面上皮细胞的生长抑制

阅读:4
作者:Lei Li, Jinguang Wu, Shifu Weng, Limin Yang, Huizi Wang, Yizhuang Xu, Keng Shen

Conclusion

The spectral features provided information about important molecular characteristics of the cells in response to chemicals. These findings demonstrated the possible use of FTIR spectroscopy to evaluate DHA-induced growth inhibition effects in ovarian cancer cells and provided a promising new tool for monitoring cell growth and the effects of antitumor drugs in the clinic in the future.

Methods

Cell growth and viability and the 50% inhibitory concentration (IC50) of DHA were assessed by the MTT assay. FTIR spectroscopy was used to monitor cells following DHA treatment, and data were analyzed by OMNIC 8.0 software.

Purpose

Ovarian cancer is the most lethal of gynecological malignancies. Dihydroartemisinin (DHA), a derivative of artemisinin (ARS), has profound effects against human tumors. The aim of this study was to provide a convenient, cost-efficient technique, Fourier transform infrared (FTIR) spectroscopy, to monitor and evaluate responses to DHA-induced growth inhibition of ovarian cancer cells.

Results

DHA can decrease the viability of ovarian cancer cells and normal cells, but cancer cells were more sensitive to this drug than normal cells. Spectral differences were observed between cells with or without DHA treatment. In particular, an increase in the amount of lipids and nucleic acids was observed. The band intensity ratio of 1454/1400, and the intensity of the band 1741 cm-1 increased, indicating stronger absorption after DHA treatment. Moreover, the differences were larger for the cell lines that were more sensitive to DHA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。