Study of hydrophilic electrospun nanofiber membranes for filtration of micro and nanosize suspended particles

亲水性电纺纳米纤维膜过滤微纳米悬浮颗粒的研究

阅读:5
作者:Ramazan Asmatulu, Harish Muppalla, Zeinab Veisi, Waseem S Khan, Abu Asaduzzaman, Nurxat Nuraje

Abstract

Polymeric nanofiber membranes of polyvinyl chloride (PVC) blended with polyvinylpyrrolidone (PVP) were fabricated using an electrospinning process at different conditions and used for the filtration of three different liquid suspensions to determine the efficiency of the filter membranes. The three liquid suspensions included lake water, abrasive particles from a water jet cutter, and suspended magnetite nanoparticles. The major goal of this research work was to create highly hydrophilic nanofiber membranes and utilize them to filter the suspended liquids at an optimal level of purification (i.e., drinkable level). In order to overcome the fouling/biofouling/blocking problems of the membrane, a coagulation process, which enhances the membrane's efficiency for removing colloidal particles, was used as a pre-treatment process. Two chemical agents, Tanfloc (organic) and Alum (inorganic), were chosen for the flocculation/coagulation process. The removal efficiency of the suspended particles in the liquids was measured in terms of turbidity, pH, and total dissolved solids (TDS). It was observed that the coagulation/filtration experiments were more efficient at removing turbidity, compared to the direct filtration process performed without any coagulation and filter media.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。