Extracellular vesicle-packaged mitochondrial disturbing miRNA exacerbates cardiac injury during acute myocardial infarction

细胞外囊泡包装的线粒体干扰 miRNA 加剧急性心肌梗死期间的心脏损伤

阅读:5
作者:Ping Sun, Chao Wang, Ge Mang, Xiangli Xu, Shuai Fu, Jianfeng Chen, Xiaoqi Wang, Weiwei Wang, Hairu Li, Peng Zhao, Yifei Li, Qi Chen, Naixin Wang, Zhonghua Tong, Xin Fu, Ying Lang, Shasha Duan, Dongmei Liu, Maomao Zhang, Jiawei Tian

Abstract

Mounting evidence suggests that extracellular vesicles (EVs) are effective communicators in biological signalling in cardiac physiology and pathology. However, the role of EVs in cardiac injury, particularly in ischemic myocardial scenarios, has not been fully elucidated. Here, we report that acute myocardial infarction (AMI)-induced EVs can impair cardiomyocyte survival and exacerbate cardiac injury. EV-encapsulated miR-503, which is enriched during the early phase of AMI, is a critical molecule that mediates myocardial injury. Functional studies revealed that miR-503 promoted cardiomyocyte death by directly binding to peroxisome proliferator-activated receptor gamma coactivator-1β (PGC-1β) and a mitochondrial deacetylase, sirtuin 3 (SIRT3), thereby triggering mitochondrial metabolic dysfunction and cardiomyocyte death. Mechanistically, we identified endothelial cells as the primary source of miR-503 in EVs after AMI. Hypoxia induced rapid H3K4 methylation of the promoter of the methyltransferase-like 3 gene (METTL3) and resulted in its overexpression. METTL3 overexpression evokes N6-methyladenosine (m6 A)-dependent miR-503 biogenesis in endothelial cells. In summary, this study highlights a novel endogenous mechanism wherein EVs aggravate myocardial injury during the onset of AMI via endothelial cell-secreted miR-503 shuttling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。