Parthenolide alleviates microglia-mediated neuroinflammation via MAPK/TRIM31/NLRP3 signaling to ameliorate cognitive disorder

小白菊内酯通过 MAPK/TRIM31/NLRP3 信号传导缓解小胶质细胞介导的神经炎症,从而改善认知障碍

阅读:6
作者:Mingde Fan, Chao Wang, Xueying Zhao, Yang Jiang, Chengwei Wang

Background and purpose

Neuroinflammation, mainly mediated by microglia, is involved in the evolution of Alzheimer's disease (AD). Parthenolide (PTL) has diverse pharmacological effects such as anti-inflammatory and antioxidative stress. However, whether PTL can modulate microglia-mediated neuroinflammation to improve cognitive impairment in amyloid precursor protein/presenilin 1 (APP/PS1) mice is unclear.

Conclusions

PTL improved cognitive and behavioral dysfunction, inhibited neuroinflammation, and showed potent anti-neuroinflammatory activity and neuroprotective effects by improving the MAPK/TRIM31/NLRP3 axis. Our study emphasized the therapeutic potential of PTL for improving cognitive disorders during AD progression.

Methods

LPS/IFN-γ-induced BV2 and HMC3 microglia were used for in vitro experiments; the roles of PTL on anti-inflammatory, anti-oxidative, phagocytic activity, and neuroprotection were assessed by inflammatory cytokines assays, dichlorodihydrofluorescein diacetate, phagocytosis, and cell counting kit-8 assays. Western blot and immunofluorescence(IF) were used to examine related molecular mechanisms. In vivo, IF and western blot were applied in LPS-treated wild-type (WT) mice and APP/PS1 mice models. The Morris water maze test was performed to evaluate the effects of PTL on cognitive disorders.

Purpose

Neuroinflammation, mainly mediated by microglia, is involved in the evolution of Alzheimer's disease (AD). Parthenolide (PTL) has diverse pharmacological effects such as anti-inflammatory and antioxidative stress. However, whether PTL can modulate microglia-mediated neuroinflammation to improve cognitive impairment in amyloid precursor protein/presenilin 1 (APP/PS1) mice is unclear.

Results

In vitro, PTL dramatically suppressed proinflammatory cytokines IL-6, IL-1β, and TNF-α release and increased IL-10 levels. Moreover, PTL decreased reactive oxygen species and restored microglial phagocytic activities via the AKT/MAPK/ NF-κB signaling pathway. Importantly, we discovered that PTL obviously enhanced TRIM31 expression and siTRIM31 elevated proinflammatory cytokine levels. Furthermore, we determined that the anti-inflammatory role of PTL was mostly TRIM31/NLRP3 signaling-dependent. In vivo, PTL alleviated microgliosis and astrogliosis in LPS-treated WT and APP/PS1 mice. Additionally, PTL significantly ameliorated memory and learning deficits in cognitive behaviors. Conclusions: PTL improved cognitive and behavioral dysfunction, inhibited neuroinflammation, and showed potent anti-neuroinflammatory activity and neuroprotective effects by improving the MAPK/TRIM31/NLRP3 axis. Our study emphasized the therapeutic potential of PTL for improving cognitive disorders during AD progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。