A Two-Pronged Nanostrategy of Iron Metabolism Disruption to Synergize Tumor Therapy by Triggering the Paraptosis-Apoptosis Hybrid Pathway

双管齐下的纳米策略通过破坏铁代谢来触发凋亡-凋亡混合途径协同肿瘤治疗

阅读:7
作者:Huali Lei, Guanghui Hou, Lin Liu, Zifan Pei, Youdong Chen, Yujie Lu, Nalin Yang, Shumin Sun, Liang Cheng

Abstract

Iron metabolism has emerged as a promising target for cancer therapy; however, the innate metabolic compensatory capacity of cancer cells significantly limits the effectiveness of iron metabolism therapy. Herein, bioactive gallium sulfide nanodots (GaSx), with dual functions of "reprogramming" and "interfering" iron metabolic pathways, were successfully developed for tumor iron metabolism therapy. The constructed GaSx nanodots ingeniously harness hydrogen sulfide (H2S) gas, which is released in response to the tumor microenvironment, to reprogram the inherent transferrin receptor 1 (TfR1)-ferroportin 1 (FPN1) iron metabolism axis in cancer cells. Concurrently, the gallium ions (Ga3+) derived from GaSx act as a biochemical "Trojan horse", mimicking the role of iron and displacing it from essential biomolecular binding sites, thereby influencing the fate of cancer cells. By leveraging the dual mechanisms of Ga3+-mediated iron disruption and H2S-facilitated reprogramming of iron metabolic pathways, GaSx prompted the initiation of a paraptosis-apoptosis hybrid pathway in cancer cells, leading to marked suppression of tumor proliferation. Importantly, the dysregulation of iron metabolism induced by GaSx notably increased tumor cell susceptibility to both chemotherapy and immune checkpoint blockade (ICB) therapy. This study underscores the therapeutic promise of gas-based interventions and metal ion interference strategies for the tumor metabolism treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。