Nuclear Activation Function 2 Estrogen Receptor α Attenuates Arterial and Renal Alterations Due to Aging and Hypertension in Female Mice

核活化功能 2 雌激素受体 α 可减轻雌性小鼠因衰老和高血压引起的动脉和肾脏改变

阅读:10
作者:Emmanuel Guivarc'h, Julie Favre, Anne-Laure Guihot, Emilie Vessières, Linda Grimaud, Coralyne Proux, Jordan Rivron, Agnès Barbelivien, Céline Fassot, Marie Briet, Françoise Lenfant, Coralie Fontaine, Laurent Loufrani, Jean-François Arnal, Daniel Henrion

Abstract

Background The cardiovascular protective effects of estrogens in premenopausal women depend mainly on estrogen receptor α (ERα). ERα activates nuclear gene transcription regulation and membrane-initiated signaling. The latter plays a key role in estrogen-dependent activation of endothelial NO synthase. The goal of the present work was to determine the respective roles of the 2 ERα activities in endothelial function and cardiac and kidney damage in young and old female mice with hypertension, which is a major risk factor in postmenopausal women. Methods and Results Five- and 18-month-old female mice lacking either ERα (ERα-/-), the nuclear activating function AF2 of ERα (AF2°), or membrane-located ERα (C451A) were treated with angiotensin II (0.5 mg/kg per day) for 1 month. Systolic blood pressure, left ventricle weight, vascular reactivity, and kidney function were then assessed. Angiotensin II increased systolic blood pressure, ventricle weight, and vascular contractility in ERα-/- and AF2° mice more than in wild-type and C451A mice, independent of age. In both the aorta and mesenteric resistance arteries, angiotensin II and aging reduced endothelium-dependent relaxation in all groups, but this effect was more pronounced in ERα-/- and AF2° than in the wild-type and C451A mice. Kidney inflammation and oxidative stress, as well as blood urea and creatinine levels, were also more pronounced in old hypertensive ERα-/- and AF2° than in old hypertensive wild-type and C451A mice. Conclusions The nuclear ERα-AF2 dependent function attenuates angiotensin II-dependent hypertension and protects target organs in aging mice, whereas membrane ERα signaling does not seem to play a role.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。