The Medicago truncatula DREPP Protein Triggers Microtubule Fragmentation in Membrane Nanodomains during Symbiotic Infections

蒺藜苜蓿 DREPP 蛋白在共生感染过程中引发膜纳米域中的微管碎片化

阅读:6
作者:Chao Su, Marie-Luise Klein, Casandra Hernández-Reyes, Morgane Batzenschlager, Franck Anicet Ditengou, Beatrice Lace, Jean Keller, Pierre-Marc Delaux, Thomas Ott

Abstract

The initiation of intracellular host cell colonization by symbiotic rhizobia in Medicago truncatula requires repolarization of root hairs, including the rearrangement of cytoskeletal filaments. The molecular players governing microtubule (MT) reorganization during rhizobial infections remain to be discovered. Here, we identified M. truncatula DEVELOPMENTALLY REGULATED PLASMA MEMBRANE POLYPEPTIDE (DREPP), a member of the MT binding DREPP/PCaP protein family, and investigated its functions during rhizobial infections. We show that rhizobial colonization of drepp mutant roots as well as transgenic roots overexpressing DREPP is impaired. DREPP relocalizes into symbiosis-specific membrane nanodomains in a stimulus-dependent manner. This subcellular segregation coincides with DREPP-dependent MT fragmentation and a partial loss of the ability to reorganize the MT cytoskeleton in response to rhizobia, which might rely on an interaction between DREPP and the MT-organizing protein SPIRAL2. Taken together, our results reveal that establishment of symbiotic associations in M. truncatula requires DREPP in order to regulate MT reorganization during initial root hair responses to rhizobia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。