Pleiotrophin ameliorates age-induced adult hippocampal neurogenesis decline and cognitive dysfunction

多效蛋白可改善年龄引起的成人海马神经发生衰退和认知功能障碍

阅读:7
作者:Haoyang Li, Li Xu, Wei Jiang, Xiusheng Qiu, Huiming Xu, Fan Zhu, Yu Hu, Shuzhen Liang, Chengcheng Cai, Wei Qiu, Zhengqi Lu, Yaxiong Cui, Changyong Tang

Abstract

Cognitive impairment has been associated with an age-related decline in adult hippocampal neurogenesis (AHN). The molecular basis of declining neurogenesis in the aging hippocampus remains to be elucidated. Here, we show that pleiotrophin (PTN) expression is decreased with aging in neural stem and progenitor cells (NSPCs). Mice lacking PTN exhibit impaired AHN accompanied by poor learning and memory. Mechanistically, we find that PTN engages with protein tyrosine phosphatase receptor type Z1 (PTPRZ1) to promote NSPC proliferation and differentiation by activating AKT signaling. PTN overexpression or pharmacological activation of AKT signaling in aging mice restores AHN and alleviates relevant memory deficits. Importantly, we also find that PTN overexpression improves impaired neurogenesis in senescence-accelerated mouse prone 8 (SAMP8) mice. We further confirm that PTN is required for enriched environment-induced increases in AHN. These results corroborate the significance of AHN in aging and reveal a possible therapeutic intervention by targeting PTN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。